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Abstract. We propose a simple model Hamiltonian tc describe the normal state of cuprate 
superconducting materials, In this model the holes with single occupation consuaint introduced 
by doping move in an antiferromagnetic background of coppcr spins, Using this model 
Hamiltonian, we can bener explain the magnetic and Iransporl pmperties of the normal slate. 

Since the discovery of cuprate superconducting materials [I] there has been considerable 
controversy over the choice of the appropriate microscopic Hamiltonian. It is generally 
agreed now, however, that Anderson’s starting point 121, namely strong on-site Coulomb 
interactions among a partially filled band of the Cu 3d level, is correct. Following this clue, 
Zhang and Rice [3] proposed a single-band effective Hamiltonian: the t-J model. The 
key point of their work is that the hybridization strongly binds a hole on each square of 
0 atoms to the central Cu2+ ions in a similar way as a hole in the single-band effective 
Hamiltonian; two holes feel a strong repulsion against residing on the same square. At 
zero doping, the t-J model directly reduces to the quantum antiferromagnetic Heisenberg 
model. Substantial progress has recently been achieved in understanding the Heisenberg 
limit, both theoretically and experimentally [MI. The effects of doping, however, are still 
highly controversial. The gauge theory of the t-J model [7-91 gives a better description of 
the transport properties of the normal state of cuprate superconducting materials, but it is 
difficult to explain its anomalous magnetic behaviour, which is shown by nuclear magnetic 
resonance (NMR) and other experiments. 

Recently, Sokol and Pines [lo] used pure scaling considerations to show that 
experimental data [ 11-14] on the NMR spin-lattice relaxation rate TI and spin-echo decay 
rate Tzc in cuprates imply a quantum critical (QC), z = 1 (where z is a dynamic exponential), 
behaviour over an unexpectedly broad doping range, and at low temperatures a quantum 
disorder (QD) z = 1 behaviour. The crossover to the z = 2 regime occurs only in fully 
doped materials through a meta-insulator transition. 

The unusual physical properties of the normal state may derive from its strongly 
antiferromagnetic correlation behaviour. The doping will destroy the long-range 
antiferromagnetic correlation. but the system still retains the short-range antiferromagnetic 
correlation behaviour, which induces the system to shift from the renormalized classical 
(RC) regime to QC or QD regimes. From current experimental data, we believe that the 
properties of the normal state of cuprates are determined by two different regions: one is 
the central region of the first Brillouin zone of the copper spins, another is its corner region, 
i.e. near the regions Q = (*$, rt?) which mainly reflect the antiferromagnetic behaviour 
of the system. Current theoretical works only consider one region or the other [7-9,15]. 
In this paper we use a simple model Hamiltonian that captures this key feature of cuprates, 

0953-8984/95/193749+08$19.50 @ 1995 IOP Publishing Ltd 3749 



3750 Yu-Liang Liu 

in order to study the magnetic and transport properties of their normal state. We study the 
following model Hamiltonian: 

H = --t c?LEjm + Vo . & + J c $ . .?j (1) 

where & = $$&p&, E;.. = (1 - ni-.)ci,, ci.(cL) is the hole operator which derives 
from the doping, and $ is the spin operator at site i which represents the copper spin. 
Here we adopt an effective square lattice for 0 which identifies the Cu lattice; the holes 
introduced by the doping reside on the effective lattice sites, which have a single occupation 
constraint because of the strong repulsive interaction among the holes. The first term in (1) 
is the hole hopping term. The second term describes the Kondo interaction between the 
copper and hole spins, which derives from the hybridization between the holes on the Cu 
sites and the holes on the 0 sites. The last term describes the antiferromagnetic interaction 
among the copper spins, which is valid for both the doped and undoped cases. This model 
Hamiltonian can be seen as an effective Hamiltonian deriving from the three-band Hubbard 
model where the hybridization between the hole on the Cu site and the hole on the 0 site 
induces an exchange (Kondo) interaction; here we think of the holes on the Cu sites as 
being localized, and the holes on the 0 sites hop in an effective lattice which identifies 
the Cu sites. This model Hamiltonian describes a very simple physical picture in which 
holes with a single occupation condition move in an antiferromagnetic background. In the 
Kondo regime, the copper and hole spins bind into a Kondo singlet, which is similar to the 
Zhang and Rice singlet: it then has an effective hopping on different sites. We believe that 
this model Hamiltonian describes the same physical properties as the t-J model at some 
energy scale, but it can explain the NMR data better than the t-J model. Note that this 
model is different from the Kondo lattice model because of the single occupation condition 
of the holes; it is different from the t-J model because the hopping holes are induced by 
the doping. 

We adopt a common method to deal with the single occupation condition by introducing 
aslaveboson: Et, =p!f,, =bif io ,p 'pi t f i~f i f i ,  = 1 (orbTbi =A;f i$ ) .  Herebi(=p:) 
is a hard-core boson operator which describes the charge degree of the hole, and fi. is a 
fermion operator that describes its spin degree. In the hole representation, the Hamiltonian 
in (1) can be written as 

(ill i (ij) 

Here we introduce two Hubbard-Stratonovich fields q t  and x i j  to decouple the hard-core 
boson and fermion, and Ai is a Lagrangian multiplier that ensures the single occupation 
condition. To treat the hard-core nature of the bosons effectively, we make the following 
transformation to transform the hard-core bosons into fermions with a vortex tube carrying 
one flux quantum attached to each [16,17]: 

where the operators h:, hi obey Fermi statistics and is the angle between the direction 
from site i to site j and some fixed direction, the x axis for example. We believe that in 
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the low-temperature low-energy long-wavelength limits the hard-core nature of the bosons 
is important, so we must consider its effect. 

In the spin and fermion coherent-state representations, for the spin part we take the 
antiferromagnetic N k l  order as its background because, although the doping destroys long- 
range antiferromagnetic order, short-range antiferromagnetic order remains; for the hole 
part, we take the following approximations, i.e. we only consider the effect of the phase 
fluctuation: 

r l . .  21 - - (,,)&%i x i j  = (X)eiAri Ai = A + iAo(i) 

It is well known that the Hamiltonian in (2) transforms into the following action: 

1 1  
4irr 21 + 1 

+ - - 1’ ds  s dzx ~ , ~ ~ 4 , , a , 4 ~  

where Q = (f:, &:).U = VOS8,g = 1/JS2, c2 = 8a2J2S2, mF = l / t (q) ,  me = l / t ( x ) ,  
1 = 0,1,. . . ,6 is the doping density, h(x;) = q i $ / S ,  qi = f is the staggered spin field, 
@fo, $h the fermion fields, A, the gauge field which derives from the phase fluctuation 
of the Hubbard-Stratonovich fields qi j  and x i j ,  a,, the Chem-Simons gauge field which 
derive from the nature of the hard-core boson. If we integrate out the gauge field a,, it is 
equivalent to taking the following msformation in the action: 

/ Da,,Dph e-sbhl = Dq$ e-s[odl (6) s 
where 

The physical picture described by the action in (5) is clear: the spin and charge degrees 
of the hole are separated, but there exists an interaction between them by the gauge field. 
The spin part of the hole has an interaction with the staggered spin field, which mainly 
describes the magnetic behaviour of the normal state. The transport properties of the 
normal state are dominated by the charge part of the hole. The spin part of the system 
is mainly controlled by the corner region of the first Brillouin zone, but the charge part of 
the system is mainly controlled by its central region. We believe that the spin part of the 
system does not drastically affect its charge part and will not change its transport properties 
in the normal state because the staggered spin field has less inhence on the hard-core 
boson field and gauge field. However, in the superconducting state the spin part drastically 
affects the charge part. The antiferromagnetic spin fluctuation tends to make the fermions 

is the hard-core boson field. 
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pair and desboy the gauge invariance, but the gauge field is strongly pair breaking and 
will in general significantly suppress the pairing transition temperature. The competition 
of the antiferromagnetic fluctuation and gauge field fluctuation will determine the transition 
temperature of the superconducting state. This problem will bc addressed in a separate 
paper. Here we only consider the physical properties of the normal state. 

Generally, in the normal state, we can integrate out the fermion field @fm and obtain 
an effective action that includes the staggered spin field, hard-core boson field and gauge 
field. Because of gauge invariance, the staggered spin field does not directly interact with 
the gauge field: they only affect each other through the fermion field. After integrating out 
the fermion field, we have the following effective action: 

SeR=S:ff+S& 

where 

N ( E p )  is the density of states at the Fermi surface, q~ the Fermi wave velocity, and the factor 
F(Q - q )  can be written in the one-loop approximation as F(Q - q )  - n/ulQ - q( - 1 
for q cc 1. We see that the spin and charge parts are completely separated (omitting 
here high-order terms). Higher-order terms may induce an interaction between the spin 
and charge parts, but they are irrelevant in the low-energy limit. This is bzle because the 
Fermi surface is stable and not destroyed by the gauge fluctuation due to the nature of the 
hard-core bosons, so one can safely integrate out the fermion field. 

We now study the spin and charge parts separately. We can use the renormalization 
group method to study the spin part [IS]. From the action (6), we see. that there exist three 
regimes [IO]. (i) In the z = 1 regime (where z is a dynamic exponential), the term quadratic 
in frequency, U,  is dominant over the linear term. (ii) In the z = 2 regime, the linear term 
is dominant. (iii) The crossover regime from z = 1 to z = 2 is determined by the last term 
in (6), which derives from the interaction between the copper and hole spin. We do not 
consider this crossover regime further. 

We use the renormalization group methods developed in [4.19] to study the behaviour 
of the effective action in (8). Here we adopt the symbols used in [4]: go = hcAg, 
to = kBTg,  where A is a cutoff of the wavevector. For intermediate doping, the last term in 
(8) is a small quantity, which can be treated perturbatively; the frequency w has a scaling 
transformation w' = &e', which corresponds to the z = 1 rezime. In order to get the 
low-energy behaviour of the system we can integrate out the high-energy parts. which will 
induce effective coupling constan8 depending upon the renormalization parameter l .  In 
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the oneloop approximation, we get the following renormalization group equations of the 
coupling constants: 

df g t  1 sinh[(g/t)(l - uzg2)1/z] _ = _  
dl 4~ (1 - a2g2)'/* cosh[(g/t)(l - ~ ~ g ~ ) ' / ~ ) ]  - cos(ag2/t) 

_ =  2 - -  " (  dl 4~ (1 - &g2)1/2 cosh[(g/t)(l - - cos(agz/t) (10) 
1 sinh[(g/t)(l - u2g2)1/2] 

" E )  = t 
dl t 

where a0 = 1 / 0 ~ p .  If we assume that the density of stam at the Fermi surface obeys the 
relation N ( E F )  cx mF, the quantity OAF takes the form 

We adopt the method used in [20] to make the renormalization group transformation for 
the fermion field @fv; we have the relation N R ( E F ,  1 )  = N(EF)e', where 1 )  is a 
renormalized density of states. This relation is correct, at least in the region q - 0. 

On the other hand, for full doping, the last term in (8) is more important than the 
second term and we cannot treat it as a perturbative term; the frequency o has the scaling 
transformation o' = wez, corresponding to the z = 2 regime, which means that the system 
undergoes a 'phase bansition' from the z = 1 to the z = 2 regime due to the doping. 
In the z = 2 regime, the second term in (8) and high-order terms of the frequency are 
irrelevant under the scaling transformation: we will therefore omit these terms. Using the 
above methods, in the one-loop approximation we have 

where 5 = ohF/2&'0 will be treated as a renormalization invariant. In fact, equations (10) 
and (11) are obtained in the different critical regions; they are valid only near their fixed 
points corresponding with the z = 1 and z = 2 regions, respectively. We can intuitively 
understand these problems in the following way: in the low-doping regime, the density of 
states N ( E F )  is very small, and the quantity OAF is very large; the term linear in on is 
less important than the term quadratic in on, so the system is in the z = 1 region. In the 
largedoping regime, the quantity OAF is very small; the term linear in on is more important 
than the quadratic term, and the system is into the z = 2 region. However, we need a more 
reasonable explanation which will come from further study. 

The above renormalization group equations can be easily solved if we take the quantity 
U to be small. Generally, for the z = 1 regime, according to these resolutions we can write 
the following expression for the spin susceptibility in the low-energy limit: 

xo 
5;' + q2 - (1/c2)02 - iF(Q - q)o/oh XI (4.0) = 
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where 

4naz 1 +- 
a&- kBTa,(f)c; OR 

1 _ -  

and FI - l / T  for the QC regime, while 

and - constant for the QD regime. The terms m~ and OR derive from high-order 
quantum fluctuations without doping [61. In the QD regime, OR is very large: as T + 0, 
&(T) -+ CO. In the QC regime, q - ,LT(&/a)2, where 1 is a constant. The term WAF(I) 
is the renormalized quantity of WAF, where xo is a constant. We see that the image term 
consists of two parts: one derives from the effect of undoping and another is induced by 
doping. For the z = 2 regime, we can write a general expression for the spin susceptibility 
in the low-energy limit: 

where 6; - 1/T in the QC regime, and h - constant in the QD regime; xi is a constant. 
These two expressions for the spin susceptibility are valid in the corner region and mainly 
describe the physical properties of the normal state controlled by the corner region (Le. 
Q = (&n/a. &n/a)) of the first Brillouin zone. 

Using the above spin susceptibilities we can calculate the NMR spin lattice relaxation 
rate and spin echo rate TZG at Cu sites, which are completely determined by the real and 
imaginary parts of the spin susceptibility, respectively. In the QD regime, for z = 1 and 
z = 2, T ~ G  = constant, 1/TTl = constant + constant/OR(T). T + 0, &(T) --f ca. In the 
QC regime TI =constant, for z = 1 and z = 2; T ~ G  - T, for z = 1; T z  - TI/’, for z = 2. 
We see that the Nm relaxation rate l / T F  increases and reaches a maximum, then decreases 
as T increases. In the z = 1 QC regime, F - 1/T, the renormalized density of states 
NR(EF, f) a N ( E F ) T .  If we take the following relation for static spin susceptibility [21], 
x(q  = 0) N,(EF,~), we can explain the temperature dependence of the static spin 
susceptibility and the NMR spin-lattice relaxation rate at 0 sites, I / T F  m x(q = 0). In the 
low-temperature region, the system enters the QD regime and an energy gap appears in the 
antiferromagnetic quantum fluctuation excitation spec”. However, the opening energy 
gap drastically influences the NMR relaxation rate at Cu sites, but it has little influence on 
the static spin susceptibility x(q  = 0) and the NMR relaxation rate at 0 sites. We believe 
that the relation N R ( E F ,  f) - T can be approximately extended to the QD regime. These 
results are in better agreement with current experimental data, which show that the model 
Hamiltonian in (1) can be better used to describe the magnetic behaviour of the normal 
state of cuprates. We believe that the model Hamiltonian captures the key feature of the 
cuprate superconducting materials, namely that the holes induced by doping have a strong 
magnetic correlation with the copper spin. This property is responsible for the anomalous 
magnetic behaviour of the cuprate superconducting materials. 

In the normal state, the transport property of the system is mainly determined by the 
effective action (9). In the higher temperature region, the momentum relaxation rate of the 
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fermions is l/ri a [ma~(€x,kgT)]~ '~ and the boson transport time is I/.," cx ksT. We 
note that the electric conductivity of the system is 

so that UF >z UB, a - UB. The physical resistivity is dominated by the boson resistivity, 
which is in agreement with experiment in both the linear T dependence and the scaling of 
the spectral weight with hole concentration. Because of the nature of the hard-core bosons, 
there exists a ChernSimons gauge field ac, which breaks the parity and time symmetries 
and induces an odd-parity gauge field propagator 

&(io.q) = (Aj(io,q)Ao(-io, -q)) = a&jpqkF(o, qz). 

In the RPA case we can easily prove that there really exists a propagator Djo(io, 4). We 
believe that the propagator Djo(io, q)  exists over a wide energy scale, although the nature 
of the hard-core bosons is important in the low-energy limit. If we adopt this method and 
use the fermion field @h instead of a boson field as in [22], we can obtain the following 
expression for the Hall coefficient (taking the function F(o, q 2 )  = (1/co)(1/q2)S,,o): 

1 
1 + U T  RH = RA- +R? 

where 01 = (1/8n%o)(nF - n?), nF = [eXp(-fih/kgT) + 11-I is the Fermi distribution 
function, and the chemical potential ph is proportional to the doping density 6 .  In the case 
o f  low doping and high temperature, the coefficient 01 is nearly independent of temperature. 
The term RG is the Hall coefficient for the system without odd-parity gauge interactions; at 
low doping R; a 116. The term RE is the Hall coefficient in the infinite-temperature limit 
which can be identified 1231 as 

R F = R ~ ( $ - ,  1 + ') 
where Ro is a constant. We believe that the charge part, which describes the transport 
property of the normal state, is controlled by the central region of the first Brillouin zone 
(which mainly reflects the character of this region of the system). 

In conclusion, we have used a simple physical picture, in which holes with a single 
occupation constraint introduced by doping move in the antiferromagnetic background of 
the copper spins, to describe the normal state of cuprate superconducting materials by 
the traditional slave boson method. We can better explain the magnetic and transport 
properties of the normal state. The results obtained are qualitatively in agreement with 
current experimental data, which show that the model Hamiltonian captures the key feature 
of cuprate superconducting materials. 
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